Search results for "Macroscopic scale"
showing 10 items of 13 documents
Melange: A viscoelastic lattice-particle model applicable to the lithosphere
2012
[1] This article introduces the software Melange, a 3D lattice-particle hybrid model. The software was specifically designed in order to simulate ductile visco-elasto-plastic deformation and can be used to study tectonic processes in the lithosphere from the micro to the macro scale. Melange is under an open source license. The code takes both relevant yield mechanisms for the deformation of lithospheric material into account: dynamic brittle failure and ductile creep, where ductile creep is modeled as viscoelasticity. The software considers effects of the local geology, of the inherent disorder of geomaterials, of rheological layering of the lithosphere and applies repulsion when the mater…
Diffusion through thin membranes: Modeling across scales
2016
From macroscopic to microscopic scales it is demonstrated that diffusion through membranes can be modeled using specific boundary conditions across them. The membranes are here considered thin in comparison to the overall size of the system. In a macroscopic scale the membrane is introduced as a transmission boundary condition, which enables an effective modeling of systems that involve multiple scales. In a mesoscopic scale, a numerical lattice-Boltzmann scheme with a partial-bounceback condition at the membrane is proposed and analyzed. It is shown that this mesoscopic approach provides a consistent approximation of the transmission boundary condition. Furthermore, analysis of the mesosco…
Solitons and their observable signatures in quasi-one-dimensional systems
2005
We give an overview of the experimental signatures of nonlinear waves: notably topological and non topological solitons, in specific quasi-one-dimensional devices and condensed matter systems. Non topological solitons can be easily observed and manipulated, on a macroscopic scale, in optical fibers and electrical transmission lines. Topological solitons have been clearly identified as fluxons in Josephson transmission lines and as domain walls in condensed matter systems such as magnetic chains and synthetic polymers. By contrast, at the present time the observable signatures of nonlinear excitations such as pulse or envelope solitons and polarons, which are predicted to occur on a microsco…
Speckle Interferometry Analysis of Full-bending Behavior of GFRP Pultruded Material
2016
Abstract The use of Glass Fiber Reinforced Polymer materials (GFRP) has increased in the last years even among civil structural engineering due to their high specific strength, lightweight and excellent corrosion resistance. With application of the pultrusion method, the manufacture of large-scale profiles with various cross-section forms became potentially possible with relatively low costs. Usually two different technological approaches are available to realize the element: in the first one a mat-roving-mat sequence is adopted, in the second one only roving is present. Continuous filament mat (CFM, fibers distributed randomly in all directions) is often used to build up laminate thickness…
The Surface of Ice under Equilibrium and Nonequilibrium Conditions
2019
ConspectusThe ice premelt, often called the quasi-liquid layer (QLL), is key for the lubrication of ice, gas uptake by ice, and growth of aerosols. Despite its apparent importance, in-depth understanding of the ice premelt from the microscopic to the macroscopic scale has not been gained. By reviewing data obtained using molecular dynamics (MD) simulations, sum-frequency generation (SFG) spectroscopy, and laser confocal differential interference contrast microscopy (LCM-DIM), we provide a unified view of the experimentally observed variation in quasi-liquid (QL) states. In particular, we disentangle three distinct types of QL states of disordered layers, QL-droplet, and QL-film and discuss…
Telechelic Star Polymers as Self-Assembling Units from the Molecular to the Macroscopic Scale
2012
By means of multiscale molecular simulations, we show that telechelic-star polymers are a simple, robust, and tunable system, which hierarchically self-assembles into soft-patchy particles and mechanically stabilizes selected, open crystalline structures. The self-aggregating patchy behavior can be fully controlled by the number of arms per star and by the fraction of attractive monomeric units at the free ends of the arms. Such self-assembled soft-patchy particles while forming, upon augmenting density, gel-like percolating networks, preserve properties as particle size, number, and arrangement of patches per particle. In particular, we demonstrate that the flexibility inherent in the soft…
The Soliton Concept in Lattice Dynamics
1996
In previous chapters we have considered nonlinear waves in the macroworld. We have examined different systems which provide the simplest examples of onedimensional systems or devices, where the localized waves or pulses called solitons can be simply and coherently created, easily observed, and manipulated on a macroscopic scale. At the microscopic level the localized nonlinear wave modes have a spatial extension ranging from less than a few microns to a few angstroms. These excitations, which correspond to large-amplitude atomic or molecular motions, are mainly created by thermal processes, sometimes by some external stimulus; their experimental manifestation is indirect; their observation …
Nonlinear Evolution Equations, Quasi-Solitons and their Experimental Manifestation
1990
We review the typical experimental facts which characterize quasisolitons in one-dimensional real systems, in connection with their modeling by nonlinear partial differential equations.We consider these nonlinear waves or excitations in two different domains of the real world : the macroworld and the microworld. In the macroworld we examine typical one-dimensional devices : the electrical networks, the Josephson transmission lines and the optical fibers, where the localized waves or pulses can be simply and coherently created, easily observed and manipulated on a macroscopic scale. In the microworld, we consider the magnetic chains and polymers, where the indirect experimental signatures of…
Macroscopic conductivity of free fermions in disordered media
2014
We conclude our analysis of the linear response of charge transport in lattice systems of free fermions subjected to a random potential by deriving general mathematical properties of its conductivity at the macroscopic scale. The present paper belongs to a succession of studies on Ohm and Joule's laws from a thermodynamic viewpoint. We show, in particular, the existence and finiteness of the conductivity measure $\mu _{\mathbf{\Sigma }}$ for macroscopic scales. Then we prove that, similar to the conductivity measure associated to Drude's model, $\mu _{\mathbf{\Sigma }}$ converges in the weak$^{\ast } $-topology to the trivial measure in the case of perfect insulators (strong disorder, compl…
Continuum constitutive laws to describe acoustic attenuation in glasses
2020
International audience; Nowadays metamaterials are at the focus of an intense research as promising for thermal and acoustic engineering. However, the computational cost associated to the large system size required for correctly simulating them imposes the use of finite-elements simulations, developing continuum models, able to grasp the physics at play without entering in the atomistic details. Still, a correct description should be able to reproduce not only the extrinsic scattering sources on waves propagation, as introduced by the metamaterial microstructure, but also the intrinsic wave attenuation of the material itself. This becomes dramatically important when the metamaterial is made…